
MODSE 2008. WORKSHOP ON MODEL-DRIVEN SOFTWARE EVOLUTION 1

Gra2MoL: A domain specific transformation
language for bridging grammarware to modelware

in software modernization
Javier Luis Cánovas Izquierdo, Jesús Sánchez Cuadrado, Jesús Garcı́a Molina

Abstract—Model-driven engineering (MDE) can be used both
to create new software systems and to evolve or modernize
existing software systems. In model-driven software evolution,
models are extracted from the system and then MDE techniques
are applied to make it evolve. Most evolution scenarios involve
dealing with existing source code written in some programming
languages. Therefore, a bridge from grammarware to MDE must
be built to extract models from such a source code.

In this paper we present an approach for the extraction of
models conforming to a target metamodel from source code
conforming to the grammar of a programming language. This
approach is based on the definition of a grammar-to-model
transformation language, named Gra2MoL, which is a language
specially tailored to address the grammarware-modelware bridge
in modernization scenarios. The language promotes grammar
reuse, and provides domain-specific features such as a powerful
query language to traverse syntax trees.

Index Terms—Software evolution, Model Driven Moderniza-
tion

I. INTRODUCTION

MODEL-DRIVEN engineering (MDE) techniques are
not only used to create new software systems, but also

can be useful in software evolution or modernization. The area
of model-based software evolution is emerging and a great
research and development effort will be needed in the next
years. Recently, OMG has proposed several modernization
standards in its ADM initiative [1], some tools are currently
under development such as MoDisco [2], and even some
research challenges have been identified for the evolution of
systems built by using MDE techniques [3].

A model-driven evolution process requires models to be
extracted from legacy software and most software evolution
scenarios involve dealing with source code written in some
programming language. Thus, a bridge from grammarware to
modelware technical spaces must be built to extract models
from source code. In the last years, several approaches for
bridging grammarware and modelware have been proposed,
which aim to define the concrete syntax of textual domain
specific languages (DSL). These approaches can be catego-
rized in two groups depending on whether they are focused
on generating metamodels from grammars [4] [5], or they are
concerned with creating grammars from existing metamodels
[6]. Grammar-based approaches could be used to extract

Manuscript received February 25, 2008; revised Month Day, Year.
J. L. Cánovas, J. Sánchez and J. Garcı́a Molina are with Dept. of Computers

and Systems, Facultad de Informática, Univ. of Murcia, Murcia 30071, Spain;
{jlcanovas,jesusc,jmolina}@um.es.

models from source code, but they have some drawbacks that
may restrict its usefulness in model-driven modernization sce-
narios, such as the poor quality of the automatically generated
metamodel or the fact that they does not permit reuse of
existing grammars written for well-known parser generators.

In this paper we present an approach for the extraction of
models conforming to a target metamodel from source code
conforming to the grammar of a programming language. The
target metamodel will represent some kind of knowledge about
the source code, as for example a KDM-based metamodel
[7] or an abstract syntax tree metamodel. We have defined
a transformation language, named Gra2MoL (Grammar-to-
Model Language), specifically designed to address the problem
of extracting models from source code. Gra2MoL is a rule-
based transformation language likes existing model-to-model
transformation languages such as ATL or RubyTL, but with
the fundamental difference that the source element of a rule is
a grammar element instead of a source metamodel element. In
this way, the language deals natively with grammars as source
artifacts. Another important difference is that the language
provides domain-specific features to address specific issues
in grammar-to-model transformations. For instance, Gra2MoL
provides a query language to ease the traversal of the syntax
tree.

This paper is organized as follows. Section 2 shows the
motivation of the approach, while Section 3 provides an
overview of the proposed approach. In Section 4 the basic
features of Gra2MoL are described. Section 5 discusses related
work. Finally, in the last section we present our conclusions
and outline the future work.

II. MOTIVATION

In model-driven software evolution, MDE techniques (mod-
elware) are used to understand and evolve existing software
systems. During the evolution process, some models are first
extracted from the existing system and then transformations
are applied on these models to either obtain a higher level
view of the system or to generate a new system. Since
software systems are formed by artifacts such as source code
or configuration files, different technical spaces [8] such as
grammarware or XML can be involved in the evolution
process. Therefore, a bridge between the MDE technical space
modelware and these other technical spaces is needed in order
to translate specifications expressed in languages of these other
domains to models conforming to metamodels and vice versa.



MODSE 2008. WORKSHOP ON MODEL-DRIVEN SOFTWARE EVOLUTION 2

Fig. 1. Bridging grammarware to modelware

Figure 1 shows a schema for the bridge between grammarware
and modelware.

Most evolution scenarios involve dealing with source code
conforming to the grammar of a programming language or
textual files whose format can be described by a grammar.
Thus, tools providing a bridge between the grammarware
and modelware technical spaces are essential for model-driven
software evolution. In this paper we present a proposal for
bridging grammarware and modelware, which is oriented to
modernization scenarios, where it is common to deal with
a large amount of source code written in existing general
purpose languages such as COBOL, C or Java.

Several approaches for bridging grammarware and model-
ware have been defined. These approaches can be classified in
two groups according to whether they are focused on gram-
mars or metamodels. Grammar-based approaches are oriented
to generate metamodels from grammars, whereas metamodel-
based approaches work on the opposite direction. In model-
driven software evolution, the process starts from existing
source code that conforms to the grammar of a program-
ming language. Therefore, metamodel-based approaches are
not well suited, but grammar-based approaches have to be
considered. xText [4] and the works of Wimmer et al. [5]
and Kunert [9] are examples of grammar-based approaches.

xText is a component of the openArchitectureWare toolkit.
It allows us to build textual DSLs in the Eclipse platform.
The textual concrete syntax of a DSL is specified by means
of an EBNF-based language. As can be seen in Figure 2(a),
the processing of a concrete syntax specification (G) generates
the metamodel of the DSL (MMG), a parser (ParserG) to
recognize the DSL syntax and to instantiate the metamodel,
and a DSL specific editor. The generation of metamodels from
concrete syntaxes relies on a number of rules that, for instance,
are used to identify concept hierarchies or to generalize
features in a hierarchy of concepts. Despite these rules, gram-
matical aspects still remain in the generated metamodels which
tend to be quite verbose. Except for simple DSLs, it is usually
necessary to define a more suitable metamodel for the DSL,
such as a metamodel representing the underlying language
abstract syntax. In this way, a model-to-model transformation
from the generated xText metamodel to a proper abstract
syntax metamodel is required to convert models generated
by the parser to models conforming to the abstract syntax
metamodel (or any other higher-level metamodel of interest).

Fig. 2. xText grammar-based approach. A rectangle represents either a
metamodel or a model, an ellipse represents a transformation, while dashed
arrows represent conformance relationships.

Wimmer et al. have proposed a generic framework for
bridging grammarware and modelware. In a first stage, a
basic set of rules are applied to generate a raw metamodel
from an EBNF grammar, such as the one generated by xText.
Next, some heuristics are automatically applied to improve
the raw metamodel, but a user-driven stage is needed to
obtain the desired metamodel. Similarly, Kunert chooses to
add annotations to the grammar in order to drive the generation
process, but the annotations are rather limited. It is worth
noting that tools supporting these two approaches are not
available yet.

The usefulness of existing grammar-based approaches for
model-driven modernization scenarios is restricted by some
limitations that arise in practical situations. From our experi-
ence in several software evolution projects, we have identified
four problems:

• The poor quality of the generated metamodels usually
makes it compulsory to write a model-to-model transfor-
mation to obtain a higher level metamodel, such as an
AST or a KDM metamodel (this is illustrated in Figure
2(a)). As we will discuss in this paper, this kind of
model-to-model transformations are usually very similar
and they involve intensive queries over the whole source
model. Current transformation languages do not provide
constructs to write them easily.

• As we have previously shown, grammar-based ap-
proaches automatically generate a metamodel represent-
ing the language grammar and the parser to generate
models from the source code. These models are usually
stored in XMI files. Since the generated metamodel is
very close to the language grammar, the models mimic
the source code. In large projects, where hundred of
source files can be involved, this may provoke a dupli-
cation of information because software artifacts are both
represented by source code files and models. This makes
such approaches inefficient both from the space and time
points of view.

• Parsing information such as filenames, lines, columns,
etc. is important in the system evolution. For instance,



MODSE 2008. WORKSHOP ON MODEL-DRIVEN SOFTWARE EVOLUTION 3

the KDM metamodel requires this kind of information.
In current grammar-based approaches this information is
lost since the generated metamodel does not include it,
and therefore it is not propagated to models.

• There exists a considerable catalogue of grammar def-
initions for existing parser generators, such as ANTLR
[10] or JavaCC [11]. Besides, software artifacts are
usually programmed in well known programming lan-
guages, such as COBOL, C or Java, and writing such
grammars from the scratch is a difficult, time-consuming
task. Therefore, model-driven modernization approaches
should allow grammar definitions for some of the existing
parser generators to be reused.

Bearing in mind all the above mentioned problems, we have
defined the approach presented in this work.

III. PROPOSED APPROACH

In this section we present our proposal for bridging the
grammarware and modelware technical spaces in model-
driven evolution scenarios. Given a source program (PG)
conforming to the grammar (G) of a programming language,
the objective is to generate a model conforming to a target
metamodel (MMT ). This metamodel represent some knowl-
edge about the source code, such as a KDM metamodel or an
abstract syntax metamodel of a target language.

As we have discussed in the previous section, grammar-
based approaches have a series of limitations that make
them unsuitable for model-driven modernization scenarios. We
propose to use a domain-specific transformation language,
named Gra2MoL, to explicitly specifying the relationships
between source grammar elements and metamodel elements.
To accomplish that, unlike common model transformation
languages, our language uses a grammar as the source artifact
definition, instead of a metamodel. Gra2Mol treats source code
as a model, using the underlying grammar definition as if it
were a metamodel. Figure 2(b) shows this schema.

Therefore, the input of a Gra2MoL transformation is some
source code along with the grammar definition it conforms to.
Then, the source code is parsed to construct a syntax tree.
A transformation definition deals with such a syntax tree,
using the grammar definition for typing the tree nodes. As
will be explained in Section IV-B, Gra2MoL transformation
rules include query expressions for traversing the syntax tree
and retrieving information.

The conformance relationship between the syntax tree and
the grammar definition is used to allow navigation over
the syntax tree. In this way, the following correspondences
between grammar symbols and metamodel elements are iden-
tified:

Metamodel Grammar
Metaclass No terminal
PrimitiveType Terminal
Attribute Terminal in a rule’s

right hand side
Containment reference No terminal in a rule’s

right hand side

It is important to note that a grammar can only represent
explicitly containment references (i.e. composite associations).
Non-containment references are implicitly represented in the
grammar by means of identifiers.

Regarding cardinality of references, two cases need to be
distinguished. If the EBNF formalism is used, extended opera-
tors such as “?”, “*”, “+” are enough to find out the cardinality
of a no terminal symbol in a rule’s right hand side. When
BNF is considered, a syntax analysis of the corresponding
grammar lambda productions or production recursivity must
be done. Our current implementation is able to deal with
EBNF extended operators. The following table shows the
correspondences:

Cardinality EBNF Operator
1:1 No operator
0:1 ?
0:N *
1:N +

Now we will show how the correspondence between a
grammar and a metamodel can be used to navigate over a
syntax tree, and we will discuss some problems that arise
in this approach. We will use the following excerpt of the
Java grammar written in EBNF, which includes no-terminal
symbols such as classOrInterfaceDeclaration,
classDeclaration, interfaceDeclaration, and
terminal symbols such as CLASS or IDENTIFIER.

classOrInterfaceDeclaration :
modifier* (classDeclaration | interfaceDeclaration)

classDeclaration :
CLASS IDENTIFIER typeParameters
(EXTENDS type)?
(IMPLEMENTS typeList)?
classBody

classBody :
LBRACE classBodyDeclaration* RBRACE

interfaceDeclaration :
INTERFACE IDENTIFIER ...

Given a syntax tree node n of type N, a node of type
M will be reachable from n by the expression n.M if
there exists a grammar rule such that N is the left symbol
and M appears on the rule’s right hand side. For instance,
given a syntax tree node n of type classDeclaration,
the navigation expression to reach the identifier of the
class will be n.identifier. In the same way, to ac-
cess to the set of class’ declarations, the expression will
be n.classBody.classBodyDeclaration. In this ex-
pression, classBody acts as a reference with cardinality
1:1, while classBodyDeclaration acts as reference with
cardinality 0:n.

There are, however, some problems regarding produc-
tion rules with alternatives. In the grammar above, given
a node n of type classOrInterfaceDeclaration,
navigating through the alternatives (classDeclaration |
interfaceDeclaration) is difficult because they do not
share a common ancestor, so a conditional check must done to



MODSE 2008. WORKSHOP ON MODEL-DRIVEN SOFTWARE EVOLUTION 4

decide the navigation path. This problem is studied in [5] but
it is not solved properly, since it only prescribes introducing
an empty anonymous superclass. Thus, each time the node is
navigated, the path to follow must be explicitly decided, using
a code similar to this:
if n.classDeclaration.exist?

n.classDeclaration.identifier
else

n.interfaceDeclaration.identifier
end

To address this situation, we propose to annotate the gram-
mar (as it is done by xText), so that the alternative expression
has a name. In this way, the rule will be rewritten as follows:
classOrInterfaceDeclaration :

modifier*
decl=(classDeclaration | interfaceDeclaration)

Then, the node can be accessed as n.decl.identifier.
To allow this kind of expressions, the transformation language
has been designed to support duck typing [12], that is, a node’s
property can be accessed if the node is able to return a value.
In this way, a form of polymorphism is allowed without the
need of inheritance.

Nevertheless, it is not compulsory to annotate the grammar.
To avoid the problems of navigating over the syntax tree by
means of the dot notation, a structure-shy query language
[13] has been incorporated into the transformation language.
Section IV-B, will elaborate on this topic.

Finally, in addition to dealing directly with grammars,
the language provides some several domain-specific features
that ease the work of extracting a model from source code
conforming to a grammar. For instance, the structure of
the syntax tree (i.e. there is only containment relationships
between nodes) has allowed us to define a powerful query
language, similar to XPath. On the other hand, primitives to
get information such as the line that corresponds to a given
node are provided. An outline of these features and a brief
explanation of the language will be given in the next section.

IV. GRA2MOL
A. Language Description

Gra2MoL is domain-specific model transformation lan-
guage specially intended to deal with source code described
by a grammar. A Gra2MoL transformation generates a model
which conforms to a target metamodel from a source code
text which conforms to a grammar. Thus, it considers the
source code as a model whose underlying grammar acts as its
metamodel, and whose syntax tree nodes are treated as model
elements. Gra2MoL is a rule-based transformation language
whose rules have a similar nature to that of other model
transformation languages such as ATL or RubyTL1.

A transformation definition consists of a set of transfor-
mation rules which specify relationships between grammar
elements and metamodel elements. A rule is composed of four
parts, namely from, to, queries and mapping.

1In the current state of our research, Gra2MoL is a source-driven language
such as ATL or RubyTL. However, our experiments are showing that a target-
driven language can be well-suited for this kind of transformations. Therefore,
in the future the shape of the language may vary.

• The from part specifies the source grammar no-terminal
symbol, and declares a variable that will be bound to a
tree node when the rule is applied. This variable can be
used by any expression within the rule. The from part can
also include a filter expression that states the conditions
to be satisfied by the nodes whose type is the no-terminal
symbol.

• The to part specifies the target element metaclass.
• The queries part contains a set of query expressions

which allow us to retrieve information from the syntax
tree. The result of these queries will be used in the
assignments of the mapping part.

• Finally, the mapping part contains a set of bindings to as-
sign a value to the properties of the target model element.
These bindings are a special kind of assignments, used
in model transformations languages such as ATL [14] or
RubyTL [15].

Next, we show a simple example of Gra2MoL transforma-
tion definition, which extracts a KDM model from Java code.
The KDM model will only contain the non-void methods of
Java classes to simplify the example. Figure 3 shows the parts
of the Java grammar and the KDM metamodel considered in
the transformation. We have only shown the grammar rules
of interest for this example. Also, we have underlined the no
terminal symbols used in the example. Regarding the KDM
metamodel, we have considered four metaclasses: Segment of
the kdm package and codeModel, classUnit and methodUnit of
the code package. According to the KDM specification [7], a
code model is contained in a KDM Segment and is composed
of classes which are composed of methods.

The following rules specify a Gra2MoL transformation from
Java source code to KDM, as explained above. Figure 4 shows
the result of an execution of this definition.

rule ’createSegment’
from compilationUnit cu
to kdm::Segment
queries
class : /cu//#normalClassDeclaration;

mapping
model = new code::CodeModel;
model.name = "codeModel";
model.codeElement = class;

end_rule

rule ’createClass’
from normalClassDeclaration nc
to code::ClassUnit
queries
ms : /nc//#methodDeclaration[@methodName.exists];

mapping
name = nc.classId;
codeElement = ms;

end_rule

rule ’createMethod’
from methodDeclaration md
to code::MethodUnit
queries
mapping
name = md.methodName;

end_rule

In the following two sections we introduce the query
language and the rule evaluation mechanism.



MODSE 2008. WORKSHOP ON MODEL-DRIVEN SOFTWARE EVOLUTION 5

Fig. 3. Excerpt of the Java grammar and the subset of KDM metamodel used in the example.

Fig. 4. Result of a Gra2MoL transformation execution.

B. The query language

Model transformation languages usually provide model
query facilities in the form of OCL-like language expressions,
which use the dot notation to traverse the model graph. This
is enough for most practical model-to-model transformation
definitions, but the transformations that are addressed in the
grammar-to-model extraction step of model-driven moderniza-
tion have a different nature.

Since programming language grammars produce syntax

trees, references between elements must be implicitly estab-
lished by means of identifiers. On the contrary, models are
graphs where references between elements are explicit. Trans-
forming an identifier-based reference into an explicit reference
involves finding the “identified” node, which may be out of the
scope of the rule performing such a transformation. Therefore,
grammar-to-model transformations involve intensive queries
over the whole syntax tree to retrieve information that is
out of the scope of the current rule. In [16] this kind of
transformations is called global-to-local transformations. If



MODSE 2008. WORKSHOP ON MODEL-DRIVEN SOFTWARE EVOLUTION 6

dot-notation is used to write such queries, long navigation
chains must be written. Thus, we have developed a structure-
shy language, inspired in XPath to allow navigation on the
syntax tree without the need of specifying every navigation
step (i.e. to avoid specifying long navigation expressions).

A query is applied to the syntax tree, where each node
is typed with a grammar symbol, and it traverses the syntax
tree to collect a set of nodes that satisfies the query operators
conditions. There are two kinds of query operators: / and //.
They both specify the type of the node that must be found.
The / operator returns the immediate children of a node, while
the // operator navigates along all node’s children (direct and
indirect children) retrieving all nodes of a given type. The //
operator allows us to ignore intermediate superfluous nodes,
so making easy the query definition, since it specifies what
kind of node must be found, but not how to reach it.

Query operators can include an optional filter expression,
enclosed between square brackets. A filter expression is a
logical expression which is applied to the leaves of the node
specified in the query operator. Each operand of a filter is a
boolean function which checks leaves properties, for instance,
the existence or the value of a leaf. Only those nodes satisfying
the filter expression will be selected. In addition, since a query
returns one or more subtrees of the syntax tree, one may
be interested in only a certain part of such subtrees. The #
character is used to indicate the type of root nodes of the query
result. It is worth noting that it must only be specified for one
of the query operators. In the Java-to-KDM example, the query
/nc//#methodDeclaration[@methodName.exists]
of the second rule returns all methodDeclaration nodes,
for a given normalClassDeclaration node (the
query uses the variable defined in from part), which has a
methodName leaf.

C. Bindings and rule evaluation

A binding construct is used in the mapping part to establish
the relationship between source grammar elements and tar-
get metamodel elements. These bindings have an equivalent
syntax and semantics to such bindings of the RubyTL model-
to-model transformation language [15]. They are written as
assignments using the operator “=”. The right side can be the
identifier declared in the from part of the rule, a literal value
or a query identifier, and the left side must be the name of a
property of the metaclass declared in the to part.

The definitions of rule conformance and well-formed
transformation stated in [15] for RubyTL are applicable to
Gra2MoL with simple changes. In the current version, the rule
evaluation is also driven by bindings. When a rule is applied
on a node, first the filter is checked, and then if the node
satisfies the conditions, an instance of the target metaclass is
created, and the rule’s bindings are executed. In the execution
of a binding three situations can be found according to the
nature of the right side.

1) If it is a literal value, the value is directly assigned to the
property of the left side. In the Java-to-KDM example,
model.name = "codeModel" is an example of
this situation.

2) If it is a query identifier, the query is executed and a
rule defining the relationship between the query result
type (marked with #) and the type of the metaelement
property is looked up in the transformation definition.
This rule is executed for each result element of the query.
In the Java-to-KDM example, the assignment methods
= md means that there exists a rule whose from part
is the methodDeclaration grammar type and its to part
conforms to Java::Method. It is important to note that
conformance between types in the to part must take
into consideration inheritance between metaclasses. In
this case, the typeMethod rule conforms to the previous
constraints and will be executed,

3) If it is an expression, it is evaluated and there are two sit-
uations depending on whether the result is a node whose
type corresponds to a terminal (a leaf) or a no terminal
symbol. If it is a leaf, the result is a primitive type and is
assigned directly (e.g. name = md.methodName in
the previous Java-to-KDM example), otherwise, a rule
to resolve the binding is looked up and executed.

D. Implementation

Current implementation of Gra2MoL uses the ANTLR
parser generator to define the grammar of the source code
handled by a transformation definition. Parser generators in
general, and ANTLR in particular, allow actions to be attached
to grammar rules, so that computations can be made during
the parsing (e.g. to construct the syntax tree). However, we
are interested in using ANTLR grammar definitions without
attached actions for two reasons: (1) to alleviate the grammar
developer from the burden of creating the syntax tree program-
matically, (2) to allow grammars to be reused, which usually
do not include any actions.

Therefore, each grammar used in a Gra2MoL transformation
definition must be enriched with actions, which will be in
charge of creating the syntax tree that will be used during the
grammar-to-model transformation execution. Gra2MoL uses
internally a metamodel to represent generically the concrete
syntax tree (CST) of the parsed source code. This metamodel
is shown in Figure 5. There are three kinds of element in a

Fig. 5. CST metamodel



MODSE 2008. WORKSHOP ON MODEL-DRIVEN SOFTWARE EVOLUTION 7

Fig. 6. Proposed approach implementation

CST model, namely Leaf, Node and Tree. Leaf represents
a tree node which corresponds to a recognized terminal
symbol. Node represents a tree node which corresponds to
a recognized no terminal symbol, and is composed of one or
more children nodes, either of type Leaf or Node. The kind
attribute identifies the grammar symbol whose recognition
yielded to the tree node creation (this is needed to navigate
through the syntax tree as explained in Section III). Finally,
Tree represents the root node of the syntax tree. It is worth
mentioning that the enrichment process is automatic, and can
be applied to any ANTLR grammar. In addition, since the
developer of the Gra2MoL definition writes the transformation
on the basis of the language grammar, the existence of an
underlying CST model is transparent.

Once the original grammar (G) has been enriched (Ge),
we rely on ANTLR to generate a parser (ParserGe ), whose
actions will create a model conforming to the CST metamodel.
This process is illustrated in Figure 6(a), and can be seen as a
preprocessing step to make the ANTLR grammar compatible
with Gra2MoL.

The execution process of a Gra2MoL transformation is
shown in Figure 6(b). The Gra2MoL engine is fed with the
following artifacts:

• One or more source files, PG, conforming to the grammar
G of the source language.

• A reference to the parser generated in the preprocessing
step ParserGe

must also be provided to the Gra2MoL
engine, so that a CST model can be created from the
source files.

• The target metamodel MMT to which the output model
will conform. For instance, the KDM metamodel.

• A Gra2MoL transformation definition.
Before executing the transformation the source files are read

by the parser, so that an in-memory CST model is created.
When the transformation is executed, transformation rules and
queries will traverse the CST model and a target model MT

is constructed.

V. RELATED WORK

As explained previously, several approaches for bridging
grammarware and modelware have been defined. xText [4]

and the work of Wimmer et al. [5] are the main examples of
theses approaches.

The main shortcoming of xText and the work of Wimmer
et al. is the need of enhancing the quality of the generated
metamodel. In xText, a model-to-model transformation must
be defined to obtain a higher level metamodel, and in the
work of Wimmer et al. the metamodel must be annotated and
there are some manual steps involved. Our proposal allows a
higher-level model, such as KDM model or an AST model, to
be created by defining a transformation from a grammar to a
metamodel using the Gra2MoL transformation language. Since
Gra2MoL has been explicitly designed to address this kind of
transformation, it is easier to write such transformations than
using normal transformation languages. Gra2MoL also allow
us to access information such as the line or column a node is
located in the source code. Moreover, since Gra2MoL does not
use a special language to define the grammar, but the ANTLR
one, reuse of existing grammars is promoted.

Several projects aimed to provide tools and methodologies
for the model-driven modernization are currently under devel-
opment [2] [17]. MoDisco (Model Discovery) is an extensible
approach for model-driven reverse engineering. Its objective
is to discover and extract models from legacy systems and
it has been defined as part of the Eclipse GMT project [18].
The framework components are: 1) A KDM based metamodel,
2) A metamodel extension’s mechanism, 3) Facilities for
manipulating models and 4) A methodology for designing
extensions. MoDisco is being developed at the moment, and
it only offers the infrastructure to manage and create models.
MoDisco defines the discoverer concept, which is a piece of
software in charge of analyzing part of an existing system (for
instance, source code written in Java) and extracting a model
using the MoDisco’s infrastructure. In this way, our proposal
can be used to write MoDisco discoverers.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach for the extrac-
tion of models conforming to a target metamodel from source
code conforming to the grammar of a programming language.
This approach defines Gra2MoL, which is a transformation
language specially tailored to address the grammarware-



MODSE 2008. WORKSHOP ON MODEL-DRIVEN SOFTWARE EVOLUTION 8

modelware bridge in modernization scenarios. The language
promotes grammar reuse and provides domain-specific fea-
tures such as a powerful query language to traverse syntax
trees.

Although Gra2MoL is in prototype state, it is being used in
a platform migration modernization scenario. In particular, it
is being applied to migrate Struts applications to JSF. Initially
we have built a Gra2MoL interpreter in order to evaluate the
language, but we are considering writing a Gra2MoL compiler
to improve execution performance. Also, it only deals with
ANTLR grammars, but we would like to support other parser
generators.

Regarding the future work, we are studying whether or
not the current rule structure (which is source-driven) is
really suitable for this kind of transformations. Also, we will
study how to improve the navigation over the syntax tree
by recognizing certain grammatical structures (such as rule
recursion).

ACKNOWLEDGMENT

This work has been supported by Consejerı́a de Educación
y Cultura (CARM, Spain), grant TICARM-9478. Javier Luis
Cánovas Izquierdo enjoys a doctoral grant from the Fundación
Séneca. Jesús Sánchez enjoys a doctoral grant from the Span-
ish Ministry of Education and Science.

REFERENCES

[1] OMG, “Architecture-driven modernization roadmap,” OMG, Tech. Rep.,
2006.

[2] “Modisco.” [Online]. Available: http://www.eclipse.org/gmt/modisco/
[3] A. van Deursen, E. Visser, and J. Warmer, “Model-driven software

evolution: A research agenda,” in Workshop on Model-Driven Software
Evolution, 2007.

[4] S. Efftinge, “openarchitectureware 4.1 xtext language reference,”
http://www.eclipse.org/gmt/oaw/doc/4.1/r80 xtextReference.pdf, August
2006.

[5] M. Wimmer and G. Kramler, “Bridging grammarware and modelware,”
Satellite Events at the MoDELS 2005 Conference, pp. 159–168, 2006.

[6] F. Jouault, J. Bézivin, and I. Kurtev, “Tcs: a dsl for the specification
of textual concrete syntaxes in model engineering,” in GPCE, 2006, pp.
249–254.

[7] ADMTF, “Knowledge discovery meta-model (kdm),” 2007. [Online].
Available: http://www.omg.org/spec/KDM/1.0/

[8] I. Kurtev, J. Bézivin, and M. Aksit, “Technological spaces: An initial
appraisal,” in CoopIS, DOA’2002 Federated Conferences, Industrial
track, Irvine, 2002. [Online]. Available: http://www.sciences.univ-
nantes.fr/lina/atl/www/papers/PositionPaperKurtev.pdf

[9] A. Kunert, “Semi-automatic generation of metamodels and models
from grammars and programs,” in Fifth Intl. Workshop on Graph
Transformation and Visual Modeling Techniques, E. N. in Theorical
Computer Science, Ed., 2006.

[10] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific
Languages (Pragmatic Programmers). Pragmatic Bookshelf, May 2007.

[11] “Java compiler compiler.” [Online]. Available:
https://javacc.dev.java.net/

[12] D. Thomas, C. Fowler, and A. Hunt, Programming Ruby: The Pragmatic
Programmers’ Guide, Second Edition. Pragmatic Bookshelf, October
2004.

[13] T. Cleenewerck and I. Kurtev, “Separation of concerns in translational
semantics for dsls in model engineering,” in SAC ’07: Proceedings of
the 2007 ACM symposium on Applied computing. New York, NY, USA:
ACM, 2007, pp. 985–992.

[14] F. Jouault and I. Kurtev, “Transforming models with atl,” 2005.
[15] J. S. Cuadrado, J. G. Molina, and M. M. Tortosa, “Rubytl: A practical,

extensible transformation language,” in ECMDA-FA, 2006, pp. 158–172.

[16] J. van Wijngaarden and E. Visser, “Program transformation mechanics.
a classification of mechanisms for program transformation with a survey
of existing transformation systems,” Department of Information and
Computing Sciences, Utrecht University, Tech. Rep. UU-CS-2003-048,
2003.

[17] “Momocs - methodology and related tools for fast reengineering of
complex systems.” [Online]. Available: http://www.momocs.org/

[18] “Gmt project.” [Online]. Available: http://www.eclipse.org/gmt/

Javier Luis Cánovas Izquierdo is a PhD candidate
at the University of Murcia. His research inter-
ests are model-driven development and model-driven
modernization. Contact him at the Dept. of Comput-
ers and Systems, Facultad de Informática, Univ. of
Murcia, Murcia 30071, Spain; jlcanovas@um.es.

Jesús Sánchez Cuadrado is a PhD candidate at
the University of Murcia. His research interests are
model-driven development, model transformation
languages, and dynamic languages. He received his
master’s in computer science from the University of
Murcia. Contact him at the Dept. of Computers and
Systems, Facultad de Informática, Univ. of Murcia,
Murcia 30071, Spain; jesusc@um.es.

Jesús Garcı́a Molina is a professor of software
design at the University of Murcia, where he leads
the Software Technology Research Group. His re-
search interests include model-driven development,
domain-specific languages, and software processes.
He received his PhD in science from the University
of Murcia. Contact him at the Dept. of Computers
and Systems, Facultad de Informática, Univ. of Mur-
cia, Murcia 30071, Spain; jmolina@um.es.


