
	 1	

Gra2MoL put into practice
Javier Luis Cánovas Izquierdo (jlcanovas@um.es), Jesús García Molina (jmolina@um.es)

Universidad de Murcia, Spain

Tool description

Introduction
The application of Model-Driven Development (MDD) techniques in the area of software
modernization is an emerging discipline where methods, tools and techniques have to be still
devised. The activities involved in a software modernization process can be described in the
context of the horseshoe model [1]. Figure 1 shows the horseshoe model adapted to the application
of MDD and the three main processes involved. A reverse engineering process is first applied to
obtain models that are high-level abstractions of the information of the source software system
artefacts. The restructuring process is then in charge of converting the obtained models into other
models which represent the redesigned system conforming to the target architecture. Finally, the
forward engineering process generates the target software system artefacts.

Figure 1. The horseshoe model adapted to MDD

The activities involved in the restructuring and forward engineering processes are usually
performed by applying model-to-model (m2m) and model-to-text (m2t) transformations,
respectively. However, the activities involved in a reverse engineering process, which could be
denominated as text-to-model (t2m) transformations, are normally carried out by ad-hoc solutions
(i.e. parsers).

Extracting models from the source code is one of the most important reverse engineering
activities. Since source code files conforms to the grammar of a general programming language
(GPL), ad-hoc parsers are usually developed to obtaining such models. However, developing an ad-
hoc parser is a time-consuming and very expensive task. Furthermore, although other approaches
such as xText or Stratego can be applied, they have a number of drawbacks that restrict their
application in reserve engineering (in [2] a deep analysis about several existent alternatives is
presented). With these problems in mind, we created the Gra2MoL language [2], a domain-specific
language (DSL) for extracting models from source code.

In the past two years, we have successfully applied Gra2MoL to obtain models from source
code of several programming languages and we have used it as part of a process for extracting
ADM models [3]. Whereas the Gra2MoL language was presented in EC-MDA’2009 as a paper in
the Foundations track [2], now we show the Gra2MoL development environment along with
several practical experiences. This document is organized as follows. Firstly, we present the
Gra2MoL features, secondly we show a transformation example, thirdly we describe the tool, and
finally we indicate some examples of application.

Gra2MoL
In Gra2MoL, a model extraction process is considered as a grammar-to-model transformation, so
mappings between grammar elements and metamodel elements are explicitly specified. As is

	 2	

shown in Figure 2, a Gra2MoL transformation has four inputs: source code (PG) along with the
grammar definition (G) it conforms to, a target metamodel (MMT) and a transformation definition
(MappingGra2MoL). The output is a model (MT) which conforms to the target metamodel.

Figure 2. Process of extracting model from source code by using Gra2MoL.

The language has been designed as a rule-based transformation language with rules whose
structure is similar to those provided in m2m transformation languages such as RubyTL [4] or
ATL [5], with two important differences: i) the source element of a rule is a grammar element
rather than a metamodel element, and ii) the navigation is expressed by a specially tailored query
language rather than an OCL-based language.

A Gra2MoL transformation definition consists of a set of transformation rules. Each rule
specifies the mappings between a grammar element and a target metamodel element and is
composed of four parts:
 The from part specifies a grammar non-terminal symbol, and declares a variable that will be

bound to a tree node when the rule is applied. This variable can be used by any expression
within the rule. The from part can also include query operations to check the structure to be
satisfied by the nodes whose type is the non-terminal symbol.

 The to part specifies the target element metaclass.
 The queries part contains a set of query expressions which allow information to be retrieved

from the CST. The result of these queries will be used in the assignments of the mappings part.
 Finally, the mappings part contains a set of bindings to assign a value to the properties of the

target element.
The execution of a Gra2MoL transformation definition is driven by the bindings of the

mappings section. Gra2MoL bindings have very similar syntax and semantics to those used in
RubyTL and ATL languages but, in this case, the right-hand side can be the variable specified in
the from part of the rule, a literal value or a query identifier. On the other hand, model extraction
from source code requires an intensive use of queries for retrieving scattered information which is
necessary to build the target metamodel elements. Thus, Gra2MoL incorporates a structure-shy
query language inspired in XPath which allows us to traverse syntax trees efficiently in order to
obtain such information. A more detailed explanation about the query language and rule
evaluation can be found in [2].

Gra2MoL language has incorporated new features to improve its efficiency, extensibility and
adaptability to the model extraction problem. Some of these features are the following:
 Skip rules for dealing with expressions. Grammar rules for describing expression languages

have a particular structure and this new type of rule helps to define transformation rules for
extracting models which represent such expressions.

 Support for island grammars. The island grammar mechanism is used when a main language
contains one or more sublanguages (e.g. the Javadoc language in Java). Thus, island grammar
allows defining complex languages which are composed of languages which conforms to
different grammars.

 Mixin rules for factorizing the queries and mappings of the rules. In large transformation
definitions, there are normally several rules which share some queries or mappings. In this
case, mixin rules allow us to factorize such transformation code for decreasing the scattering.

 Extensibility mechanism which allows incorporating new operation to both the query
language and mappings section.

 CDO support for storing large models in databases.

	 3	

Example
The following example has been used in a migration from Struts to JSF platforms. We used the
KDM metamodel for representing the Java source code in order to promote the interoperability.
Since the lack of space, the Figure 3 only shows a fragment of the transformation definition (the
transformation definition can be downloaded from Gra2MoL website [6]).

Figure 3. Gra2MoL transformation definition example

The first rule, named mapCodeModel, starts the transformation process and creates an instance
of CodeModel metaclass. Whereas the first binding of this rule assigns a value to the name attribute,
the second binding calls to the mapClassUnit rule, since from and to parts of such a rule conforms
to this binding. The mapClassUnit rule also has a binding which initializes the name attribute and
the second binding calls to the mapField and mapMethod rules depending on the result nodes of
the query elements, which have to satisfy the from filter of such rules.

Gra2MoL tool overview
Although Gra2MoL has been designed as a tool to be used stand-alone, we are working on
integrating it in the AGE platform at this moment. Thus, AGE incorporates a specific editor for
Gra2MoL transformations which provides syntax highlighting, outline view and auto-completion
for queries, making easier the navigation through the grammar. Figure 4 shows a capture of the
editor and the outline view.

Figure 4. Gra2MoL editor in Eclipse

Gra2MoL transformations can be launched by its Java API but it also provides a pair of Ant
tasks which perform the main tasks of the transformation process. One of them is in charge of
enriching automatically the source code grammar in order to include computations which will
create a syntax tree from the source code. Such enriched grammar is used to generate an ANTLR
parser. The other Ant task executes a Gra2MoL transformation definition and has four inputs: (1)
the previously generated ANTLR parser from the enriched grammar, (2) the source code, (3) the
transformation definition and (4) the target metamodel. The result of this Ant task is a model
conforming to the target metamodel. Thus, the whole transformation process can be specified in a

	 4	

single Ant build file by using these tasks (a skeleton of such a file can be downloaded from the
Gra2MoL website [5]).

Using Gra2MoL

Gra2MoL is an academic tool whose first version was available in 2008 [7]. Since then, we have
applied it in several real projects, some of them are the following (they are available in the
Gra2MoL website [5]):
 Extracting models from Java code in a migration from Struts to JSF applications.
 Extracting models from PL/SQL code in a migration from Oracle Forms to Java platform.
 Extracting models from Maude code.
 Extracting models from bash-script configuration files.
 Extracting models from SQL DDL and SQL DML files in an improvement of Wiki systems.

By using Gra2MoL in these projects, we have been able to test the language in different
contexts and to check its suitability. Thus, we have improved some quality aspects: the robustness
by fixing some errors; the efficiency by optimizing some algorithms and using CDO, and the
usability by adding new features which make easy the specification of the transformations (e.g.
mixin and skip rules).

On the other hand, we have applied Gra2MoL for extracting models as part of a modernization
process for ADM [8]. In particular, we have obtained ASTM [9] and KDM [10] models from Oracle
Forms applications and then checked some metrics [3].

Participation in the tools presentation or only to the exhibition

 Gra2MoL could be presented in the tools presentation track with the objective of showing the
capabilities of the language and how we are tackled the model extraction in some of the previously
presented case studies.

References
[1] R. C. Seacord, Daniel Plakosh and Grace A. Lewis, “Modernizing Legacy Systems”, Addison-

Wesley, 2003.
[2] J. Cánovas and J. García Molina. “A Domain Specific Language for Extracting Models in

Software Modernization”, 5th EC-MDA, LNCS 5562, pp. 82-97, 2009 (downloadable from
http://adm.omg.org/adm_info.htm#white papers).

[3] J. Cánovas and J. G. Molina, “Building an ADM-based tool”, IEEE Software – Special Issue in
Software Evolution, Jul/Aug 2010. To be published.

[4] J. S. Cuadrado, J. G. Molina and M. M. Tortosa, “Rubytl: A practical, extensible transformation
language” in ECMDA-FA, L. N. in Computer Science, vol. 4066/2006, pp. 158, 172 (2006).

[5] F. Jouault and I. Kurtev, “Transforming models with atl” (2005).
[6] Gra2MoL website. http://modelum.es/gra2mol.
[7] J. Cánovas, J. S. Cuadrado and J. G. Molina, “Gra2MoL: A domain specific transformation

language for bridging grammarware to modelware in software modernization” in II Workshop
Model Driven Software Evolution (MoDSE) (2008).

[8] ADM website. http://adm.omg.org.
[9] ASTM metamodel specification. http://www.omg.org/spec/ASTM/1.0/Beta1

[10] KDM metamodel specification. http://www.omg.org/spec/KDM/1.1/

